Reg. No.:....

Third Semester B.Tech. Degree Examination, April 2015 (2013 Scheme) 13,304: ANALOG ELECTRONICS (E)

Time: 3 Hours

Max. Marks: 100

PART-A

Answer all questions. Each question carries 2 marks.

- 1. Draw the circuit for a collector feedback bias for CE configuration.
- 2. Explain the need for bias stabilization.
- 3. In a transistor circuit, load resistance is 6 K Ω and quiescent current is 1.5 mA. Determine the operating point, when the battery voltage V_{cc} = 12V. What is the change in Q point when the load resistance is changed from 5 K Ω to 7.5 K Ω ?
- 4. Explain the parameters of JFET.
- 5. What are the advantages of CMOS devices?
- 6. Give one application for
 - i) Transformer coupled amplifier
 - ii) Direct coupled amplifier.
- 7. Explain the difference between a voltage amplifier and a power amplifier.
- 8. What is meant by cross over distortion in amplifiers?
- 9. Explain drift compensation in 741C op-amp.
- 10. Explain the following terms with respect to op-amp
 - i) CMRR
 - ii) Input bias current.

 $(10\times2=20 \text{ Marks})$

12

8

15

5

15

5

10

10

PART-B

Answer one full question from each Module. Each question carries 20 marks.

Module - I

- 11. a) Design a voltage divider bias circuit for an NPN transistor having $h_{fe} = 120$ and $V_{BE} = 0.7$ V. The desired Q point is $V_{CE} = 5$ V and $I_c = 1$ mA and stability factor should be less than or equal to 7. $V_{cc} = 10$ V and $R_F = 1$ K Ω .
 - b) Explain diode compensation for $V_{\mbox{\footnotesize{BE}}}$ in a transistor circuit.
- 12. a) Draw the h parameter equivalent circuit of a loaded amplifier in CE configuration and derive the expressions for current gain, voltage gain, input impedance, overall voltage gain and current gain.
 - b) Explain the significance of using h parameters. Also state the limitations of it.

Module - II

- 13. a) Obtain the expressions for voltage gain, input impedance and output impedance of common drain JFET amplifier using small signal model.
 - b) The transconductance of an FET used as a voltage amplifier circuit (common source amplifier) is 2500 μ s and the load resistance is 12 K Ω . Determine the voltage gain of the amplifier circuit. Take rd and R $_D$ >> R $_I$
- 14. a) Explain in detail, the difference in construction and characteristics of depletion and enhancement type MOSFET.
 - b) Draw the circuit and explain the working of a transformer coupled transistor amplifier.

Module - III

15.	a)	Show that the maximum efficiency of a transformer coupled class A power amplifier is 50%.	12
	b)	A transformer coupled class A power amplifier draws a current of 150 mA from a collector supply of 10 V, when no signal is applied to it. Determine	
		i) Maximum output power	
		ii) Maximum collector efficiency and	
	į	iii) Power rating of the transistor.	8
16.	a)	Explain the working of an RC phase shift oscillator, with a neat circuit diagram. Also derive the expression for frequency of oscillation.	15
	b)	To an amplifier of 60dB gain, a negative feedback of β = 0.006 is applied. What would be the change in the overall gain of the feedback amplifier if the gain of the amplifier decreases by 15% ?	5
		Module – IV	
17.	a)	Draw the block diagram of an op-amp and explain the operation of each block.	5
	b)	i) Explain the differences between IC op-amps 741 and 301.	5
		ii) Design and implement the following circuit with two operational amplifiers	
		$V_0 = -5V_1 + 2V_2 - 10V_3$. Use minimum value of resistance as 10 K Ω .	10
18.	a)	i) Explain the working of an op-amp integrator with neat diagram.	5
		ii) A 12 mV, 2 kHz sinusoidal signal is applied to the inverting input terminal of an op-amp integrator for which R = 50 K Ω and C = 2 μ f. Determine the output voltage.	5
	b)	With neat diagram and relevant waveforms, explain the working of a voltage level detector.	10